Transitions in geometric minimum spanning trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Minimum Spanning Trees

Let S be a set of n points in < d. We present an algorithm that uses the well-separated pair decomposition and computes the minimum spanning tree of S under any Lp or polyhedral metric. It has an expected running time of O(n logn) for uniform distributions. Experimentalresults show that this approachis practical. Under a variety of input distributions, the resultingimplementation is robust and ...

متن کامل

Minimum Dilation Geometric Spanning Trees

The Minimum Dilation Geometric Spanning Tree Problem (MDGSTP) is N P-hard, which justifies the development of heuristics to it. This paper presents heuristics based on the GRASP metaheuristic paradigm for MDGSTP. The input of this problem is a set of points P = {p1, p2, . . . , pn} in the plane. Let the geometric graph G(P) associated with P be the undirected weighted complete graph of n vertic...

متن کامل

Geometric Minimum Spanning Trees with GeoFilterKruskal

Let P be a set of points in R. We propose GEOFILTERKRUSKAL, an algorithm that computes the minimum spanning tree of P using well separated pair decomposition in combination with a simple modification of Kruskal’s algorithm. When P is sampled from uniform random distribution, we show that our algorithm takes one parallel sort plus a linear number of additional steps, with high probability, to co...

متن کامل

Dynamic Half-Space Reporting, Geometric Optimization, and Minimum Spanning Trees

We describe dynamic data structures for half-space range reporting and for maintaining the minima of a decomposable function. Using these data structures, we obtain efficient dynamic algorithms for a number of geometric problems, including closest/farthest neighbor searching, fixed dimension linear programming, bi-chromatic closest pair, diameter, and Euclidean minimum spanning tree.

متن کامل

Computing Geometric Minimum Spanning Trees Using the Filter-Kruskal Method

Let P be a set of points in R. We propose GeoFilterKruskal, an algorithm that computes the minimum spanning tree of P using well separated pair decomposition in combination with a simple modification of Kruskal’s algorithm. When P is sampled from uniform random distribution, we show that our algorithm runs in O(n log n) time with probability at least 1−1/n for a given c > 1. Although this is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1992

ISSN: 0179-5376,1432-0444

DOI: 10.1007/bf02293049